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ABSTRACT 
Game playing theory is an important research branch of artificial intelligence. In this paper, we first describe how to build a 
game tree for five-piece chess game. Then, we introduce a maximin search algorithm in game tree to find the optimal playing 
strategy, and βα −  pruning strategy to improve the search efficiency. Finally, we evaluate the performance of search 
algorithm by analysis and an example program based on Visual C++ 6.0. 
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1. INTRODUCTION 
 Game playing theory is an important research 
branch of artificial intelligence, mainly including intricate 
chess games. Existing resolved chess games [2-3] benefit 
from the development of game playing theory of machine in 
the last half a century. The advantage of computer lies in its 
high speed computing power. Many complex problems can 
be solved by enumerating all possible and feasible solutions, 
and then selecting the optimal strategy. However, chess 
game playing should not depend on the high speed 
computing power excessively, since this problem is very 
complex. In fact, the complexities of state spaces of existing 
chess games have exceed the total number of grains existed 
in the whole universe. The computing power of existing 
computer has not been strong enough to enumerate all such a 
large-scale state space. Fortunately, we can decrease the 
scale of the problem by considering the constraints of 
domain knowledge and enhanced knowledge, both of which 
are derived from good understanding of the problem to solve 
and good description model. For five-piece chess game 
example, the characters existed in four directions can help 
search the optimal solution more effectively. In this paper, 
we first build a game tree for five-piece chess game, which 
is used to evaluate and predict the whole situation of the 
game. Then, we introduce a maximin search algorithm based 
on the newly built game tree to find feasible playing 
strategies. Next, we also point out how to enhance the search 
efficiency by applying α-β pruning theory. Finally, we 
analyze the efficiency of the proposed algorithm and 
evaluate its practical performance by comparing our 
example playing program with Renju Solver, which is the 
most famous five-piece chess playing program.  

2. SITUATION EVALUATION 
a. Game Tree 
 When the chess game is going on, the game 
situation is steered jointly by the actions of both players. At 
each step, the whole situation of the chessboard is described 
by a node. When one player adds a new stone, the current 

situation is transferred into another. For the current situation, 
the current player has many choices, which will transfer the 
current situation into different situations. In fact, each blank 
position in the chessboard is a feasible choice for the current 
player. A playing process reflects a path which originates 
from the root node, which represents the situation that the 
whole chessboard is blank, to the leaf node, which represents 
the final situation of the game that one player wins the game 
or there is a draw. If the whole tree is known by one player 
in advance, he can always find the optimal strategy to deal 
with the opponent and win the game finally. However, the 
game tree is so large in scale that existing computers neither 
build the whole picture within reasonable period, nor save 
the tree in their storage systems. 

b. Situation Score 
 The situation evaluation is the basis of the whole 
game playing system. Whether the situation of the chess 
game is evaluated precisely or not determines the final 
performance of the game playing program. 
 
 The player needs to evaluate the situation if the 
next stone is placed at a blank position, including its own 
stone and the opponent’s stone. Thus, all remainder blank 
positions in the chessboard should be analyzed. For a 
generic blank position, the player should analyze the 
situation in four directions, including horizontal, vertical, 
diagonal, and back-diagonal. The situation is actually the 
progress that the player or the opponent wins the game. We 
assign two scores to each blank position to describe the 
situation. One is for the player self and another is for the 
opponent. If the new stone is placed at this position, the 
player checks whether local stones generate any pattern in 
Table 1. If yes, the position is assigned with the 
corresponding score. The final score of a position is the sum 
of four directions. The higher the score is, it is more 
probably that the player wins the game once the new stone is 
placed here. On the contrary, the player also estimates the 
score for this position if a stone of the opponent is placed 
here. The value in Table 1 is derived from game rules and 



VOL. 3, NO. 4, April 2012                                                                                                              ISSN 2079-8407 
Journal of Emerging Trends in Computing and Information Sciences 

©2009-2012 CIS Journal. All rights reserved. 

 
http://www.cisjournal.org 

  
597 

playing experiences. The scores of the player and the 
opponent are denoted by G1(i, j) and G2(i, j), respectively, 
where i and j indicate the position. For example, if a stone of 
the player is placed at position (i, j) and local stones of the 
player match Sleep-Three, Connect-Two, Sleep-One, Sleep-
One, in four directions, the score of the player is given by 
 

G1(i, j) = 600+300+15+15 = 930                        (1) 
 

On the other side, if a stone of the opponent is placed at 
position (i, j) and local stones of the opponent match Sleep-
Three, Connect-One, Big-Connect-Two, Connect-Two, in 
four directions, the score of the opponent is given by,  
 

G2(i, j) = 480+40+200+80 = 600                        (2) 
 

c. Evaluation Function 
 

Table 1: Score Table for the situations of gobang 
 

Situation 
The one who is 

playing with 
stone 

The rival 

Sleep1 15 10 
Connect1 50 40 
Sleep2 100 80 
(big)connect2 230 200 
Connect2 300 240 
Sleep3 600 480 
(big)Three 1200 1000 
Three 1800 1200 
Four  2100 1800 
Straight four 5000 3000 
Five in a row 100000 10000 

 
 The evaluation function is used to estimate the 
situation of the whole chessboard and reflect the situation 
advantage of the player. In terms of five-piece chess game, 
the advantage of the player usually depends on the situation 
of the most important position, namely the position with the 
maximal score, which is defined as 

}0,0|),(max{ 11 WjLijiGMaxG <≤<≤=       (3) 
and the most important position for the opponent is defined 
as 

}0,0|),(max{ 22 WjLijiGMaxG <≤<≤= ,        (4) 
where L and W are the length and width of chessboard, 
respectively. 
The evaluation function is defined as the difference between 
MaxG1 and MaxG2, namely, 

21 MaxGMaxGFstate −=                                        (5) 
Fstate is lager, the situation is more advantageous for the 
player. On the other side, the situation is more advantageous 
for the opponent. 

3. MAXIMIN SEARCH 
 During the game playing process, the player faces 
so many blank positions and has to decide which position to 
put the stone at each step. The player must select the most 
urgent position. The decision depends on both the current 
situation, and the next potential actions of the opponent and 
future situations. All potential situations can be reflected by 
the game tree. Thus, the player can predict subsequent 
situations by searching the game tree. Obviously, the player 
searches deeper, the future situations are clearer but it also 
incurs more search cost. After evaluating all situations, the 
player can make the local optimal decision to increase the 
probability of winning the chess game. To predict the 
actions of the opponent, we design a minimal-score playing 
strategy for the opponent, namely, the opponent always 
chooses the strategy that will minimize the situation score of 
the player among all possible strategies. The future game 
playing process can be predicted by alternate maximizing 
and minimizing searching actions. Then, the player can 
predict the situation several steps later and make the optimal 
decision. The flow of the maximin searching algorithm is 
illustrated by Fig.1.  
 

 
Fig 1:  Flowsheet of Minimax Search Algorithm 

 
 As shown in Fig. 1, the algorithm first enumerates 
all blank positions and assigns a score for each position as 
described above. Then, the K-most important positions are 
put into a queue, which are also the searching objects.  If the 
player or opponent wins the game, namely that a position 
which generates the pattern Five-in-Row is found, the search 
returns this position and game is over. If the search has 
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arrived at the deepest layer, the algorithm returns the final 
score of the current position. Otherwise, the algorithm 
continues the search at the next layer. Before the next layer 
search, the algorithm checks the current layer is to maximize 
or minimize the situation score. 
 If the current layer is to maximize the situation 
score, whether the queue is empty or not is checked first. If 
yes, the search terminates. Otherwise, it picks nodes orderly 
and continues the next layer search. When the next layer 
search returns, the chessboard is recovered. If the returned 
value is lager than the given threshold, it begins pruning and 
terminates the search at the current layer. The flow is similar 
with that when the current layer search is to minimize the 
situation score. 

 
Fig 2: Flowsheet of Minimax Search Algorithm 

 
 Fig.2 illustrates a searching example. The square 
box represents the maximizing action of the player and the 
circle box represents the minimizing action. The value in the 
square or circle box is the score of the current situation and 
the value in the diamond box is the score of the situation 
located in the maximal search depth. At the beginning, the 
player faces three most important positions, namely, a, b, 
and c.  If position a is chosen, the opponent has two most 
important positions, namely, d and e. Of course, the 
opponent will choose d to minimize the situation score of the 
player. When the search arrives the maximal depth, the 
situation score of the player is 17 if it chooses position a at 
first. Likewise, the situation scores are 97 and -65, if 
position b and c are chosen respectively. Therefore, the 
player can obtain a good situation by the expected searching 
path b-f-n-y.  

4. IMPROVEMENT OF PRUNING 
STRATEGY 

 Further improvement can be achieved without 
sacrificing accuracy, by using ordering heuristics to search 
parts of the tree that are likely to force alpha-beta cutoffs 
early. Recently, many improvement version ofα-βpruning 
have been proposed and proved to be very useful to improve 
the searching efficiency in practical areas. In this section, we 
propose a new improvement pruning strategy, which is 

based on tabbing order, iterative deepening, minimal 
window search, and quiescence search. 

a. Tabbing Order 
 It is well known that the pruning efficiency depends 
on tabbing and searching order greatly. Different orders 
result in different pruning. To make use of the cutting-off 
effect adequately, all nodes are examined first and sorted in 
descending order of situation scores. 

b. Iterative Deepening 
 Iterative deepening is first proposed as a time 
controlling mechanism of game tree search. It refers to how 
to determine the search depth according to the search time. 
Iterative deepening is prone to prolong the search at some 
layer, which seems a waste of time and resource. However, 
the iteration at a lower layer consumes less resource. Besides 
time control, Iterative deepening is more effective than the 
common direct search. The reason is that the subsequent 
search order can be adjusted according to the results of the 
previous search, which improves the search efficiency 
greatly and also incurs few additional costs. Iterative 
deepening means repeatedly calling a fixed depth search 
routine with increasing depth until a time limit is exceeded 
or maximum search depth has been reached. The advantage 
of doing this is that you do not have to choose a search depth 
in advance; you can always use the result of the last 
completed search. 

c. Minimal Window Search 
 In the pruning process, the pruning probability 
increases as the window decreases. The window, where 

1−= βα , is the minimal window. Thus, the search 
efficiency is maximized when using the minimal window. 
Both NegaScout and MTD is the search algorithm based on 
the minimal window. Their advantages are more obvious in 
large-scale game trees. 

d. Quiescence Search 
 A depth-fixed search algorithm enumerates all 
branches to the same depth. Instead of calling Evaluate when 
depth=0 it is customary to call a quiescence search routine. 
Its purpose is to prevent horizon effects, where a bad move 
hides an even worse threat because the threat is pushed 
beyond the search horizon. This is done by making sure that 
evaluations are done at stable positions, i.e. positions where 
there are no direct threats. A quiescence search does not take 
all possible moves into account, but restricts itself e.g. to 
captures, checks, check evasions, and promotion threats. The 
art is to restrict the quiescence search in such a way that it 
does not add too much to the search time. Major debates are 
possible about whether it is better to have one more level in 
the full width search tree at the risk of overlooking deeper 
threats in the quiescence search. 

http://en.wikipedia.org/wiki/Heuristic�
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e. Analysis of Pruning Efficiency 
 In this subsection, we analyze the efficiency of the 
pruning search algorithm. The search must arrive at an end 
node which is located at the deepest layer of a part of game 
tree, since the values of αandβdepend on the situation score 
at the deepest layer. Thus, α-βpruning search usually adopts 
the depth-first strategy. In addition, the number of cut 
branches is dependent on the similarity degree between the 
initial values of αandβand the score of the final end node. 
Extremely, if the final end node appears in the first round of 
depth-first search, the most braches is cut off and the number 
of nodes that needs to be visited is minimized.  
We first analyze the most ideal progress, where the  
minimizing search expand branches in ascending order of 
situation scores and the maximizing search expand branches 
in descending order of situation scores. Assume the maximal 
depth is D and the branch factor is B. Then, the number of 
end nodes generated in the search tree is N = BD whenα-
βpruning is not applied. However, when applying pruning 
strategies, the number of generated end nodes can be 
reduced as 

N = BD/2-1, D is even                                   (6) 
N = B(D+1 )/ 2 + B(D-2)/2 – 1, D is odd     (7) 

 Thus, pruning search only visits half nodes when 
compared with the direct search, which improves the search 
efficiency greatly. 

5. PERORMANCE EVALUATION 
 Renju Solver is the chess playing software currently 
with the greatest ability, with which we can fully test 
evaluation the performance of the proposed algorithm. Our 
testing hardware is DELL PRECISION 530 workstation, 
whose configurations is listed as following: two Xeon (TM) 
1.7 G CPU; 2GB memory; 80G hard disk; WINDOWS XP 
operating system. The testing method is that two programs 
running in the same computer play five-piece chess with 
each other. They begin the first stone alternately. Renju 
program is set to the highest difficulty, level 9, where the 
comprehensive search depth is set to level 3, and the testing 
time is set to extremely slow. This program is set to the most 
difficult level, or the top level. Testing results of ten rounds 
competitions are the program that begins the first stone will 
win the game. 

 As shown in figure 3, there are few differences 
among the final situations of all rounds of games and none 
of two parties can defeat the opponent and win the game 
quickly. Thus, we conclude that those two programs have 
the similar performance. Renju Solver spends about 2-4 
seconds at each step, with comparation that this procedure 
cost 40 to 55 seconds at each step. Thus, the search speed of 
the proposed search algorithm needs to be improved further.  

 
Fig 3: Renju Solver lost on the defensive position 

 

 
Fig 4: Renju Solver won on  the offensive 

6. CONCLUSION 
 This issue studied the minimax search algorithm of 
game-tree and talked about the basic principle of α-β 
pruning technology and how to improve it. After analyzing 
the efficiency of the algorithm, we find out that our software 
can equally match the ability of Renju Solver when just 
searching to layer3. But the algorithm and executing 
efficiency of our software are still far away from Renju 
Solver. In future, we will go on enhancing the efficiency of 
our algorithm and perfecting the game rules. 
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