
VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

596

Search Algorithm in the Five-piece Chess
Tan Shunhua, Chen Miao

School of Information Engineering, Southwest University of Science and Technology
Mianyang, Sichuan, China

Email: {Tanshunhua,chenmiao}@swust.edu.cn

ABSTRACT
Game playing theory is an important research branch of artificial intelligence. In this paper, we first describe how to build a
game tree for five-piece chess game. Then, we introduce a maximin search algorithm in game tree to find the optimal playing
strategy, and βα − pruning strategy to improve the search efficiency. Finally, we evaluate the performance of search
algorithm by analysis and an example program based on Visual C++ 6.0.

Keywords: Game tree; minimax serach; βα − pruning; evaluation function

1. INTRODUCTION
 Game playing theory is an important research
branch of artificial intelligence, mainly including intricate
chess games. Existing resolved chess games [2-3] benefit
from the development of game playing theory of machine in
the last half a century. The advantage of computer lies in its
high speed computing power. Many complex problems can
be solved by enumerating all possible and feasible solutions,
and then selecting the optimal strategy. However, chess
game playing should not depend on the high speed
computing power excessively, since this problem is very
complex. In fact, the complexities of state spaces of existing
chess games have exceed the total number of grains existed
in the whole universe. The computing power of existing
computer has not been strong enough to enumerate all such a
large-scale state space. Fortunately, we can decrease the
scale of the problem by considering the constraints of
domain knowledge and enhanced knowledge, both of which
are derived from good understanding of the problem to solve
and good description model. For five-piece chess game
example, the characters existed in four directions can help
search the optimal solution more effectively. In this paper,
we first build a game tree for five-piece chess game, which
is used to evaluate and predict the whole situation of the
game. Then, we introduce a maximin search algorithm based
on the newly built game tree to find feasible playing
strategies. Next, we also point out how to enhance the search
efficiency by applying α-β pruning theory. Finally, we
analyze the efficiency of the proposed algorithm and
evaluate its practical performance by comparing our
example playing program with Renju Solver, which is the
most famous five-piece chess playing program.

2. SITUATION EVALUATION
a. Game Tree
 When the chess game is going on, the game
situation is steered jointly by the actions of both players. At
each step, the whole situation of the chessboard is described
by a node. When one player adds a new stone, the current

situation is transferred into another. For the current situation,
the current player has many choices, which will transfer the
current situation into different situations. In fact, each blank
position in the chessboard is a feasible choice for the current
player. A playing process reflects a path which originates
from the root node, which represents the situation that the
whole chessboard is blank, to the leaf node, which represents
the final situation of the game that one player wins the game
or there is a draw. If the whole tree is known by one player
in advance, he can always find the optimal strategy to deal
with the opponent and win the game finally. However, the
game tree is so large in scale that existing computers neither
build the whole picture within reasonable period, nor save
the tree in their storage systems.

b. Situation Score
 The situation evaluation is the basis of the whole
game playing system. Whether the situation of the chess
game is evaluated precisely or not determines the final
performance of the game playing program.

 The player needs to evaluate the situation if the
next stone is placed at a blank position, including its own
stone and the opponent’s stone. Thus, all remainder blank
positions in the chessboard should be analyzed. For a
generic blank position, the player should analyze the
situation in four directions, including horizontal, vertical,
diagonal, and back-diagonal. The situation is actually the
progress that the player or the opponent wins the game. We
assign two scores to each blank position to describe the
situation. One is for the player self and another is for the
opponent. If the new stone is placed at this position, the
player checks whether local stones generate any pattern in
Table 1. If yes, the position is assigned with the
corresponding score. The final score of a position is the sum
of four directions. The higher the score is, it is more
probably that the player wins the game once the new stone is
placed here. On the contrary, the player also estimates the
score for this position if a stone of the opponent is placed
here. The value in Table 1 is derived from game rules and

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

597

playing experiences. The scores of the player and the
opponent are denoted by G1(i, j) and G2(i, j), respectively,
where i and j indicate the position. For example, if a stone of
the player is placed at position (i, j) and local stones of the
player match Sleep-Three, Connect-Two, Sleep-One, Sleep-
One, in four directions, the score of the player is given by

G1(i, j) = 600+300+15+15 = 930 (1)

On the other side, if a stone of the opponent is placed at
position (i, j) and local stones of the opponent match Sleep-
Three, Connect-One, Big-Connect-Two, Connect-Two, in
four directions, the score of the opponent is given by,

G2(i, j) = 480+40+200+80 = 600 (2)

c. Evaluation Function

Table 1: Score Table for the situations of gobang

Situation
The one who is

playing with
stone

The rival

Sleep1 15 10
Connect1 50 40
Sleep2 100 80
(big)connect2 230 200
Connect2 300 240
Sleep3 600 480
(big)Three 1200 1000
Three 1800 1200
Four 2100 1800
Straight four 5000 3000
Five in a row 100000 10000

 The evaluation function is used to estimate the
situation of the whole chessboard and reflect the situation
advantage of the player. In terms of five-piece chess game,
the advantage of the player usually depends on the situation
of the most important position, namely the position with the
maximal score, which is defined as

}0,0|),(max{ 11 WjLijiGMaxG <≤<≤= (3)
and the most important position for the opponent is defined
as

}0,0|),(max{ 22 WjLijiGMaxG <≤<≤= , (4)
where L and W are the length and width of chessboard,
respectively.
The evaluation function is defined as the difference between
MaxG1 and MaxG2, namely,

21 MaxGMaxGFstate −= (5)
Fstate is lager, the situation is more advantageous for the
player. On the other side, the situation is more advantageous
for the opponent.

3. MAXIMIN SEARCH
 During the game playing process, the player faces
so many blank positions and has to decide which position to
put the stone at each step. The player must select the most
urgent position. The decision depends on both the current
situation, and the next potential actions of the opponent and
future situations. All potential situations can be reflected by
the game tree. Thus, the player can predict subsequent
situations by searching the game tree. Obviously, the player
searches deeper, the future situations are clearer but it also
incurs more search cost. After evaluating all situations, the
player can make the local optimal decision to increase the
probability of winning the chess game. To predict the
actions of the opponent, we design a minimal-score playing
strategy for the opponent, namely, the opponent always
chooses the strategy that will minimize the situation score of
the player among all possible strategies. The future game
playing process can be predicted by alternate maximizing
and minimizing searching actions. Then, the player can
predict the situation several steps later and make the optimal
decision. The flow of the maximin searching algorithm is
illustrated by Fig.1.

Fig 1: Flowsheet of Minimax Search Algorithm

 As shown in Fig. 1, the algorithm first enumerates
all blank positions and assigns a score for each position as
described above. Then, the K-most important positions are
put into a queue, which are also the searching objects. If the
player or opponent wins the game, namely that a position
which generates the pattern Five-in-Row is found, the search
returns this position and game is over. If the search has

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

598

arrived at the deepest layer, the algorithm returns the final
score of the current position. Otherwise, the algorithm
continues the search at the next layer. Before the next layer
search, the algorithm checks the current layer is to maximize
or minimize the situation score.
 If the current layer is to maximize the situation
score, whether the queue is empty or not is checked first. If
yes, the search terminates. Otherwise, it picks nodes orderly
and continues the next layer search. When the next layer
search returns, the chessboard is recovered. If the returned
value is lager than the given threshold, it begins pruning and
terminates the search at the current layer. The flow is similar
with that when the current layer search is to minimize the
situation score.

Fig 2: Flowsheet of Minimax Search Algorithm

 Fig.2 illustrates a searching example. The square
box represents the maximizing action of the player and the
circle box represents the minimizing action. The value in the
square or circle box is the score of the current situation and
the value in the diamond box is the score of the situation
located in the maximal search depth. At the beginning, the
player faces three most important positions, namely, a, b,
and c. If position a is chosen, the opponent has two most
important positions, namely, d and e. Of course, the
opponent will choose d to minimize the situation score of the
player. When the search arrives the maximal depth, the
situation score of the player is 17 if it chooses position a at
first. Likewise, the situation scores are 97 and -65, if
position b and c are chosen respectively. Therefore, the
player can obtain a good situation by the expected searching
path b-f-n-y.

4. IMPROVEMENT OF PRUNING
STRATEGY

 Further improvement can be achieved without
sacrificing accuracy, by using ordering heuristics to search
parts of the tree that are likely to force alpha-beta cutoffs
early. Recently, many improvement version ofα-βpruning
have been proposed and proved to be very useful to improve
the searching efficiency in practical areas. In this section, we
propose a new improvement pruning strategy, which is

based on tabbing order, iterative deepening, minimal
window search, and quiescence search.

a. Tabbing Order
 It is well known that the pruning efficiency depends
on tabbing and searching order greatly. Different orders
result in different pruning. To make use of the cutting-off
effect adequately, all nodes are examined first and sorted in
descending order of situation scores.

b. Iterative Deepening
 Iterative deepening is first proposed as a time
controlling mechanism of game tree search. It refers to how
to determine the search depth according to the search time.
Iterative deepening is prone to prolong the search at some
layer, which seems a waste of time and resource. However,
the iteration at a lower layer consumes less resource. Besides
time control, Iterative deepening is more effective than the
common direct search. The reason is that the subsequent
search order can be adjusted according to the results of the
previous search, which improves the search efficiency
greatly and also incurs few additional costs. Iterative
deepening means repeatedly calling a fixed depth search
routine with increasing depth until a time limit is exceeded
or maximum search depth has been reached. The advantage
of doing this is that you do not have to choose a search depth
in advance; you can always use the result of the last
completed search.

c. Minimal Window Search
 In the pruning process, the pruning probability
increases as the window decreases. The window, where

1−= βα , is the minimal window. Thus, the search
efficiency is maximized when using the minimal window.
Both NegaScout and MTD is the search algorithm based on
the minimal window. Their advantages are more obvious in
large-scale game trees.

d. Quiescence Search
 A depth-fixed search algorithm enumerates all
branches to the same depth. Instead of calling Evaluate when
depth=0 it is customary to call a quiescence search routine.
Its purpose is to prevent horizon effects, where a bad move
hides an even worse threat because the threat is pushed
beyond the search horizon. This is done by making sure that
evaluations are done at stable positions, i.e. positions where
there are no direct threats. A quiescence search does not take
all possible moves into account, but restricts itself e.g. to
captures, checks, check evasions, and promotion threats. The
art is to restrict the quiescence search in such a way that it
does not add too much to the search time. Major debates are
possible about whether it is better to have one more level in
the full width search tree at the risk of overlooking deeper
threats in the quiescence search.

http://en.wikipedia.org/wiki/Heuristic�

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

599

e. Analysis of Pruning Efficiency
 In this subsection, we analyze the efficiency of the
pruning search algorithm. The search must arrive at an end
node which is located at the deepest layer of a part of game
tree, since the values of αandβdepend on the situation score
at the deepest layer. Thus, α-βpruning search usually adopts
the depth-first strategy. In addition, the number of cut
branches is dependent on the similarity degree between the
initial values of αandβand the score of the final end node.
Extremely, if the final end node appears in the first round of
depth-first search, the most braches is cut off and the number
of nodes that needs to be visited is minimized.
We first analyze the most ideal progress, where the
minimizing search expand branches in ascending order of
situation scores and the maximizing search expand branches
in descending order of situation scores. Assume the maximal
depth is D and the branch factor is B. Then, the number of
end nodes generated in the search tree is N = BD whenα-
βpruning is not applied. However, when applying pruning
strategies, the number of generated end nodes can be
reduced as

N = BD/2-1, D is even (6)
N = B(D+1)/ 2 + B(D-2)/2 – 1, D is odd (7)

 Thus, pruning search only visits half nodes when
compared with the direct search, which improves the search
efficiency greatly.

5. PERORMANCE EVALUATION
 Renju Solver is the chess playing software currently
with the greatest ability, with which we can fully test
evaluation the performance of the proposed algorithm. Our
testing hardware is DELL PRECISION 530 workstation,
whose configurations is listed as following: two Xeon (TM)
1.7 G CPU; 2GB memory; 80G hard disk; WINDOWS XP
operating system. The testing method is that two programs
running in the same computer play five-piece chess with
each other. They begin the first stone alternately. Renju
program is set to the highest difficulty, level 9, where the
comprehensive search depth is set to level 3, and the testing
time is set to extremely slow. This program is set to the most
difficult level, or the top level. Testing results of ten rounds
competitions are the program that begins the first stone will
win the game.

 As shown in figure 3, there are few differences
among the final situations of all rounds of games and none
of two parties can defeat the opponent and win the game
quickly. Thus, we conclude that those two programs have
the similar performance. Renju Solver spends about 2-4
seconds at each step, with comparation that this procedure
cost 40 to 55 seconds at each step. Thus, the search speed of
the proposed search algorithm needs to be improved further.

Fig 3: Renju Solver lost on the defensive position

Fig 4: Renju Solver won on the offensive

6. CONCLUSION
 This issue studied the minimax search algorithm of
game-tree and talked about the basic principle of α-β
pruning technology and how to improve it. After analyzing
the efficiency of the algorithm, we find out that our software
can equally match the ability of Renju Solver when just
searching to layer3. But the algorithm and executing
efficiency of our software are still far away from Renju
Solver. In future, we will go on enhancing the efficiency of
our algorithm and perfecting the game rules.

REFERENCES

[1] Zoro Tang， Wang Bo An Algorithm of the Gobang

based on NN and α-β pruning，Microcomputer
Application Technology，2009-02-007

[2] WANG Chang-fei; CAI Qiang; LI Hai-sheng Design

and Implementation of Intelligent Gobang Playgame.
Journal of System Simulation. 2009-04-033

[3] ZHANG Cong-pin; LIU Chun-hong; XU Jiu-cheng

Research on alpha-beta pruning of heuristic search in
game-playing tree. Computer Engineering and
Applications. 2008-16-017

[4] HAO Wei Analysis and Application of Algirism of

Five Chess Based on a Optimism Model. Computer
Knowledge and Technology. 2009-14-087

[5] XU Nan-shan CONG Lei SUN Feng-ping Parallel

Implementation of Gobang AI with Self-Learning
Ability. Computer Engineering and Applications. 2006-
30-012

http://dlib.edu.cnki.net/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=DNYS&NaviLink=%e7%94%b5%e8%84%91%e5%ba%94%e7%94%a8%e6%8a%80%e6%9c%af�
http://dlib.edu.cnki.net/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=DNYS&NaviLink=%e7%94%b5%e8%84%91%e5%ba%94%e7%94%a8%e6%8a%80%e6%9c%af�
http://dlib.edu.cnki.net/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=DNYS&NaviLink=%e7%94%b5%e8%84%91%e5%ba%94%e7%94%a8%e6%8a%80%e6%9c%af�
http://dlib.edu.cnki.net/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=XTFZ&NaviLink=%e7%b3%bb%e7%bb%9f%e4%bb%bf%e7%9c%9f%e5%ad%a6%e6%8a%a5�
http://dlib.edu.cnki.net/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=JSGG&NaviLink=%e8%ae%a1%e7%ae%97%e6%9c%ba%e5%b7%a5%e7%a8%8b%e4%b8%8e%e5%ba%94%e7%94%a8�
http://dlib.edu.cnki.net/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=JSGG&NaviLink=%e8%ae%a1%e7%ae%97%e6%9c%ba%e5%b7%a5%e7%a8%8b%e4%b8%8e%e5%ba%94%e7%94%a8�
http://dlib.edu.cnki.net/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=JSGG&NaviLink=%e8%ae%a1%e7%ae%97%e6%9c%ba%e5%b7%a5%e7%a8%8b%e4%b8%8e%e5%ba%94%e7%94%a8�
http://dlib.edu.cnki.net/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=DNZS&NaviLink=%e7%94%b5%e8%84%91%e7%9f%a5%e8%af%86%e4%b8%8e%e6%8a%80%e6%9c%af�
http://dlib.edu.cnki.net/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=DNZS&NaviLink=%e7%94%b5%e8%84%91%e7%9f%a5%e8%af%86%e4%b8%8e%e6%8a%80%e6%9c%af�
http://dlib.edu.cnki.net/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=DNZS&NaviLink=%e7%94%b5%e8%84%91%e7%9f%a5%e8%af%86%e4%b8%8e%e6%8a%80%e6%9c%af�
http://dlib.edu.cnki.net/KNS50/Navi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=JSGG&NaviLink=%e8%ae%a1%e7%ae%97%e6%9c%ba%e5%b7%a5%e7%a8%8b%e4%b8%8e%e5%ba%94%e7%94%a8�

	INTRODUCTION
	SITUATION EVALUATION
	Game Tree
	Situation Score
	Evaluation Function

	Table 1: Score Table for the situations of gobang
	MAXIMIN SEARCH
	IMPROVEMENT OF PRUNING STRATEGY
	Tabbing Order
	Iterative Deepening
	Minimal Window Search
	Quiescence Search
	Analysis of Pruning Efficiency

	PERORMANCE EVALUATION
	CONCLUSION
	REFERENCES

